Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 321: 111317, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35696917

RESUMO

Oil palm (Elaeis guineensis Jacq.) is one of the most important oil crops in the world, and compared to all oil crops, it has the highest productive efficiency. In the present study, a MADS-box transcription factor of the AGAMOUS class, named EgAGL9, was identified by expression profile analysis in the different developmental stages of oil palm mesocarp. Real-time quantitative PCR results confirmed that the expression of EgAGL9 increased rapidly during the last stages of oil palm mesocarp development. Then, three downstream genes, including EgSAD (Stearoyl-ACP desaturase), EgTSA (Tryptophan synthase) and EgSDH (Succinate dehydrogenase), were screened by ChIP-Seq and data analysis. EMSA analysis verified that EgAGL9 interacted with the promoter regions of EgSAD, EgTSA and EgSDH. Moreover, the expression levels of EgSAD, EgTSA and EgSDH were downregulated in EgAGL9-overexpressing protoplasts and calli of oil palm. Compared to WT, the total lipid content and ratio of unsaturated fatty acids in transgenic calli (including oleic acid, linoleic acid and linolenic acid) were significantly decreased. Together, these results revealed that these three EgAGL9-regulated genes are involved in regulatory pathways in the oil palm mesocarp. Compared with previous studies, the present study provides a new research strategy for understanding of the molecular regulatory pathways of lipid metabolism in mesocarp of oil palm. The obtained results will bring a new perspective for a comprehensive understanding of the regulation of the metabolic accumulation in the oil palm mesocarp.


Assuntos
Arecaceae , Fatores de Transcrição , Arecaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos/genética , Óleo de Palmeira/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Cell Rep ; 41(6): 1449-1460, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35362736

RESUMO

KEY MESSAGE: EgMYB108 regulates VLCFA anabolism in oil palm. Very long-chain fatty acids (VLCFAs), which are fatty acids with more than 18 C, can not only be used as a form of triglyceride (TAG) but also provide precursors for the biosynthesis of cuticle wax, and they exist in plant epidermal cells in the form of wax in higher plants. However, which and how transcriptional factors (TFs) regulate this process is largely unknown in oil palm. In this study, a MYB transcription factor (EgMYB108) with high expression in the mesocarp of oil palm fruit was characterized. Overexpression of EgMYB108 promoted not only total lipid content but also VLCFA accumulation in oil palm embryoids. Subsequently, transient transformation in protoplasts and qRT-PCR analysis indicated that the EgKCS5 and EgLACS4 genes were significantly increased with the overexpression of EgMYB108. Furthermore, yeast one­hybrid assays, dual-luciferase assays and EMSAs demonstrated that EgMYB108 binds to the promoters of EgKCS5 and EgLACS4 and regulates their transcription. Finally, EgMYB108 interacts with the promoters of EgLACS and EgKCS simultaneously and finally improves the VLCFA and total lipid contents; a pathway summarizing this interaction was depicted.. The results provide new insight into the mechanism by which EgMYB108 regulates lipid and VLCFA accumulation in oil palm.


Assuntos
Arecaceae , Arecaceae/genética , Arecaceae/metabolismo , Ácidos Graxos/metabolismo , Frutas/genética , Frutas/metabolismo , Óleo de Palmeira/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
3.
Plant Cell Rep ; 39(11): 1505-1516, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32804247

RESUMO

KEY MESSAGE: EgMADS21 regulates PUFA accumulation in oil palm. Oil palm (Elaeis guineensis Jacq.) is the most productive world oil crop, accounting for 36% of world plant oil production. However, the molecular mechanism of the transcriptional regulation of fatty acid accumulation and lipid synthesis in the mesocarp of oil palm by up- or downregulating the expression of genes involved in related pathways remains largely unknown. Here, an oil palm MADS-box gene, EgMADS21, was screened in a yeast one-hybrid assay using the EgDGAT2 promoter sequence as bait. EgMADS21 is preferentially expressed in early mesocarp developmental stages in oil palm fruit and presents a negative correlation with EgDGAT2 expression. The direct binding of EgMADS21 to the EgDGAT2 promoter was confirmed by electrophoretic mobility shift assay. Subsequently, transient expression of EgMADS21 in oil palm protoplasts revealed that EgMADS21 not only binds to the EgDGAT2 promoter but also negatively regulates the expression of EgDGAT2. Furthermore, EgMADS21 was stably overexpressed in transgenic oil palm embryoids by Agrobacterium-mediated transformation. In three independent transgenic lines, EgDGAT2 expression was significantly suppressed by the expression of EgMADS21. The content of linoleic acid (C18:2) in the three transgenic embryoids was significantly decreased, while that of oleic acid (C18:1) was significantly increased. Combined with the substrate preference of EgDGAT2 identified in previous research, the results demonstrate the molecular mechanism by which EgMADS21 regulates EgDGAT2 expression and ultimately affects fatty acid accumulation in the mesocarp of oil palm.


Assuntos
Arecaceae/genética , Arecaceae/metabolismo , Ácidos Graxos Insaturados/metabolismo , Proteínas de Plantas/genética , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Ácidos Graxos Insaturados/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Óleo de Palmeira/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Protoplastos/metabolismo
4.
Mol Cancer ; 10: 108, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21880154

RESUMO

BACKGROUND: Although current chemotherapy regimens have remarkably improved the cure rate of pediatric acute promyelocytic leukemia (APL) over the past decade, more than 20% of patients still die of the disease, and the 5-year cumulative incidence of relapse is 17%. The precise gene pathways that exert critical control over the determination of cell lineage fate during the development of pediatric APL remain unclear. METHODS: In this study, we analyzed miR-125b expression in 169 pediatric acute myelogenous leukemia (AML) samples including 76 APL samples before therapy and 38 APL samples after therapy. The effects of enforced expression of miR-125b were evaluated in leukemic cell and drug-resistant cell lines. RESULTS: miR-125b is highly expressed in pediatric APL compared with other subtypes of AML and is correlated with treatment response, as well as relapse of pediatric APL. Our results further demonstrated that miR-125b could promote leukemic cell proliferation and inhibit cell apoptosis by regulating the expression of tumor suppressor BCL2-antagonist/killer 1 (Bak1). Remarkably, miR-125b was also found to be up-regulated in leukemic drug-resistant cells, and transfection of a miR-125b duplex into AML cells can increase their resistance to therapeutic drugs, CONCLUSIONS: These findings strongly indicate that miR-125b plays an important role in the development of pediatric APL at least partially mediated by repressing BAK1 protein expression and could be a potential therapeutic target for treating pediatric APL failure.


Assuntos
Transformação Celular Neoplásica/genética , Resistencia a Medicamentos Antineoplásicos , Leucemia Promielocítica Aguda/genética , MicroRNAs/metabolismo , Adolescente , Animais , Apoptose , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Criança , Pré-Escolar , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Lactente , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/patologia , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Transplante de Neoplasias , Resultado do Tratamento , Regulação para Cima , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo
5.
J Cell Mol Med ; 15(10): 2164-75, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21070600

RESUMO

Multidrug resistance (MDR) and disease relapse are challenging clinical problems in the treatment of leukaemia. Relapsed disease is frequently refractory to chemotherapy and exhibits multiple drug resistance. Therefore, it is important to identify the mechanism by which cancer cells develop resistance. In this study, we used microRNA (miRNA) microarray and qRT-PCR approaches to investigate the expression of miRNAs in three leukaemia cell lines with different degrees of resistance to doxorubicin (DOX) compared with their parent cell line, K562. The expression of miR-331-5p and miR-27a was inversely correlated with the expression of a drug-resistant factor, P-glycoprotein (P-gp), in leukaemia cell lines with gradually increasing resistance. The development of drug resistance is regulated by the expression of the P-gp. Transfection of the K562 and, a human promyelocytic cell line (HL) HL60 DOX-resistant cells with miR-331-5p and miR-27a, separately or in combination, resulted in the increased sensitivity of cells to DOX, suggesting that correction of altered expression of miRNAs may be used for therapeutic strategies to overcome leukaemia cell resistance. Importantly, miR-331-5p and miR-27a were also expressed at lower levels in a panel of relapse patients compared with primary patients at diagnosis, further illustrating that leukaemia relapse might be a consequence of deregulation of miR-331-5p and miR-27a.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Antibióticos Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia/tratamento farmacológico , MicroRNAs/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Células K562 , Masculino , Biossíntese de Proteínas , Recidiva
6.
Zhonghua Nei Ke Za Zhi ; 49(10): 841-4, 2010 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-21162884

RESUMO

OBJECTIVE: To evaluate the effects of impaired glucose tolerance (IGT) on ventricular remodeling. METHODS: Parameters of every subject including left ventricular mass (LVM), left ventricular mass index (LVMI), E/A ratio, 75 g oral glucose tolerance test (OGTT), ambulatory blood pressure monitoring (ABPM) data including 24-hour mean systolic blood pressure (mSBP) and 24-hour mean diastolic blood pressure (mDBP) were collected. Then the relationship of IGT and myocardial remodeling related parameters were analyzed. RESULTS: The rate of diastolic dysfunction was higher in the IGT combined with hypertensive group (74%) compared with the hypertensive group (39%) (χ(2) = 6.5, P < 0.05). The rate of diastolic dysfunction was higher in the IGT group (34%) compared with the normal group (10%) (χ(2) = 5.2, P < 0.05). The rate of Left Ventricular Hypertrophy (LVH) in the IGT combined with hypertensive group (24%) was higher than the other three groups (Hypertension group 7%, IGT group 0, Normal group 0) (χ(2) = 4.56 1, P < 0.05), and there was no significance between the rest three groups (P > 0.05). Stepwise multiple regression showed age and 2 Hours' Postprandial Blood Glucose were independent risk factors of E/A ratio. CONCLUSIONS: These results suggested that IGT is a possible contributor to left ventricular hypertrophy and diastolic dysfunction, and is one of the histopathology of left ventricular remodeling.


Assuntos
Intolerância à Glucose , Transtornos do Metabolismo de Glucose/metabolismo , Transtornos do Metabolismo de Glucose/fisiopatologia , Remodelação Ventricular , Adulto , Feminino , Teste de Tolerância a Glucose , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Pessoa de Meia-Idade
7.
PLoS One ; 4(11): e7826, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19915715

RESUMO

BACKGROUND: Recent reports have indicated that microRNAs (miRNAs) play a critical role in malignancies, and regulations in the progress of adult leukemia. The role of miRNAs in pediatric leukemia still needs to be established. The purpose of this study was to investigate the aberrantly expressed miRNAs in pediatric acute leukemia and demonstrate miRNA patterns that are pediatric-specific and prognostic parameter-associated. METHODOLOGY/PRINCIPAL FINDINGS: A total of 111 pediatric bone marrow samples, including 99 patients and 12 normal donors, were enrolled in this study. Of those samples, 36 patients and 7 normal samples were used as a test cohort for the evaluation of miRNA profiling; 63 pediatric patients and 5 normal donors were used as a validation cohort to confirm the miRNA differential expression. Pediatric ALL- and AML-specific microRNA expression patterns were identified in this study. The most highly expressed miRNAs in pediatric ALL were miR-34a, miR-128a, miR-128b, and miR-146a, while the highly expressed miRNAs in pediatric AML were miR-100, miR-125b, miR-335, miR-146a, and miR-99a, which are significantly different from those reported for adult CLL and AML. miR-125b and miR-126 may serve as favorable prognosticators for M3 and M2 patients, respectively. Importantly, we identified a "miRNA cascade" associated with central nervous system (CNS) relapse in ALL. Additionally, miRNA patterns associated with prednisone response, specific risk group, and relapse of ALL were also identified. CONCLUSIONS/SIGNIFICANCE: There are existing pediatric-associated and prognostic parameter-associated miRNAs that are independent of cell lineage and could provide therapeutic direction for individual risk-adapted therapy for pediatric leukemia patients.


Assuntos
Neoplasias do Sistema Nervoso Central/diagnóstico , Leucemia/diagnóstico , Leucemia/patologia , MicroRNAs , Neoplasias do Sistema Nervoso Central/etiologia , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lactente , Masculino , Prognóstico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Risco
8.
PLoS One ; 4(9): e6849, 2009 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-19724645

RESUMO

BACKGROUND: MicroRNAs (miRNAs) have been proved to play an important role in various cellular processes and function as tumor suppressors or oncogenes in cancers including leukemia. The identification of a large number of novel miRNAs and other small regulatory RNAs will provide valuable insights into the roles they play in tumorgenesis. METHODOLOGY/PRINCIPAL FINDINGS: To gain further understanding of the role of miRNAs relevant to acute lymphoblastic leukemia (ALL), we employed the sequencing-by-synthesis (SBS) strategy to sequence small RNA libraries prepared from ALL patients and normal donors. In total we identified 159 novel miRNAs and 116 novel miRNA*s from both libraries. Among the 159 novel miRNAs, 42 were identified with high stringency in our data set. Furthermore, we demonstrated the different expression patterns of 20 newly identified and several known miRNAs between ALL patients and normal donors, suggesting these miRNAs may be associated with ALL and could constitute an ALL-specific miRNA signature. Interestingly, GO "biological process" classifications revealed that a set of significantly abnormally expressed miRNAs are associated with disease relapse, which implies that these dysregulated miRNAs might promote the progression of ALL by regulating genes involved in the pathway of the disease development. CONCLUSION/SIGNIFICANCE: The study presents a comprehensive picture of the expression of small RNAs in human acute lymphoblastic leukemia and highlights novel and known miRNAs differentially expressed between ALL patients and normal donors. To our knowledge, this is the first study to look at genome-wide known and novel miRNA expression patterns in in human acute lymphoblastic leukemia. Our data revealed that these deregulated miRNAs may be associated with ALL or the onset of relapse.


Assuntos
Regulação Leucêmica da Expressão Gênica , MicroRNAs/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , RNA/genética , Análise de Sequência de DNA , Medula Óssea/metabolismo , Biologia Computacional , Biblioteca Gênica , Genoma , Estudo de Associação Genômica Ampla , Humanos , Modelos Biológicos , Modelos Genéticos , Recidiva , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...